Strong Scaling for Numerical Weather Prediction at Petascale with the Atmospheric Model NUMA
نویسندگان
چکیده
Numerical weather prediction (NWP) has proven to be computationally challenging due to its inherent multiscale nature. Currently, the highest resolution NWP models use a horizontal resolution of about 10 km. At this resolution many important processes in the atmosphere are not resolved. Needless to say this introduces errors. In order to increase the resolution of NWP models highly scalable atmospheric models are needed. The Non-hydrostatic Unified Model of the Atmosphere (NUMA), developed by the authors at the Naval Postgraduate School, was designed to achieve this purpose. NUMA is used by the Naval Research Laboratory, Monterey as the engine inside its next generation weather prediction system NEPTUNE. NUMA solves the fully compressible Navier-Stokes equations by means of high-order Galerkin methods (both spectral element as well as discontinuous Galerkin methods can be used). Mesh generation is done using the p4est library. NUMA is capable of running middle and upper atmosphere simulations since it does not make use of the shallowatmosphere approximation. This paper presents the performance analysis and optimization of the spectral element version of NUMA. The performance at different optimization stages is analyzed using a theoretical performance model as well as measurements via hardware counters. Machine independent optimization is compared to machine specific optimization using BG/Q vector intrinsics. By using vector intrinsics the main computations reach 1.2 PFlops on the entire machine Mira (12% of the theoretical peak performance). The paper also presents scalability studies for two idealized test cases that are relevant for NWP applications. The atmospheric model NUMA delivers an excellent strong scaling efficiency of 99% on the entire supercomputer Mira using a mesh with 1.8 billion grid points. This allows to run a global forecast of a baroclinic wave test case at 3 km uniform horizontal resolution and double precision within the time frame required for operational weather prediction.
منابع مشابه
Next-Generation Global and Mesoscale Atmospheric Models
The long-term goal of this research is to construct a unified global and mesoscale nonhydrostatic numerical weather prediction (NWP) models for the U.S. Navy using new numerical methods specifically designed for modern computer architectures; this unified model is called the Nonhydrostatic Unified Model of the Atmosphere or NUMA. To take full advantage of distributedmemory computers, the global...
متن کاملSimulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)
During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...
متن کاملAssessing the Accuracy of a Linearized Observation Operator for Assimilation of Radio Occultation Data: Case Simulations with a High-Resolution Weather Model
Assimilation into numerical weather models of the refractivity, Abel-retrieved from radio occultations, as the local refractivity at ray tangent point may result in large errors in the presence of strong horizontal gradients (atmospheric fronts, strong convection). To reduce these errors, other authors suggested modeling the Abel-retrieved refractivity as a nonlocal linear function of the 3D re...
متن کاملClustering technique to interpret Numerical Weather Prediction output products for forecast of Cloudburst
With the advent of digital computers and their continuous increasing processing power, the ‘Numerical Weather Prediction’ (NWP) models which solve a close set of equations of atmospheric model, have been adopted by most of the meteorological services to issue day to day weather forecasts. These forecasts are issued for public in general. But there are many limitations inherent to this technique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.01561 شماره
صفحات -
تاریخ انتشار 2015